
CSharpCalc v1.0

Calculation, Simulation, Visualization, Prototyping

3D Graphics in CSharpCalc
An introduction to the CSC3D rendering engine

- 2 -

2 CSharpCalc v1.0 Programming Manual

- 3 -

3 CSharpCalc v1.0 Programming Manual

Table of Contents
Terms of Use .. 4

Introduction ... 6

Basic setup ... 7

The first scene ... 8

A flat shaded, textured sphere .. 9

Geometric object transformations .. 10

A complex 3D scene .. 11

Paths and extrusion objects .. 14

Path objects ... 15

Height fields ... 18

Coordinate Systems in 3D ... 19

Summary and further reading ... 21

- 4 -

4 CSharpCalc v1.0 Programming Manual

Terms of Use
Preamble

This document covers selected topics concerning the use of the CSharpCalc software. It is in no

way complete and must not be understood as an exhaustive documentation of CSharpCalc. This

manual is part of the CSharpCalc software and must not be distributed as a separate document.

The script code presented in this manual is provided under the regulations stated in the

CSharpCalc license agreement.

Permission to use

You may download and use this document as part of the CSharpCalc software free of charge but

without any warranty or liability. If you use this document you accept full responsibility and

liability for all consequences of malfunction or faulty results caused by using any information

contained in this documentation including, but not limited to, the sample scripts.

Disclaimer of warranty

There is no warranty for the information contained in this manual to the extent permitted by

applicable law. This document is provided 'as is'. This includes, but is not limited to, the fitness

for any particular purpose. The entire risk of any consequences of errors or ambiguities in this

document is with you. Should parts of the information contained in this manual prove false,

misleading, inaccurate or incomplete you assume the full cost of all related consequences.

Limitation of Liability

In no event, unless required by applicable law, shall the author of this manual be liable for any

damage arising from using information contained in this document, not even if the author has

knowledge of the possibility of such damage. Possible damage includes, but is not limited to,

loss of data, wrong or inaccurately rendered results or the failure of CSharpCalc (the software

covered by this manual) to operate with any other programs.

Distribution of this document

This document is bundled with the CSharpCalc software release it pertains to. Consequently, it is

neither intended nor permitted to be distributed as a separate document. If you wish to

distribute CSharpCalc, you may use the link:

http://www.csharpcalc.org/download.php

for offering downloads of the CSharpCalc package, including this manual, on your web site.

- 5 -

5 CSharpCalc v1.0 Programming Manual

Governing law

This license agreement shall be governed by the laws of the Republic of Austria. Venue of

jurisdiction is Graz, Austria.

Severability clause

In the case that any part of this license agreement is found to be invalid, the validity and legality

of all remaining provisions stated in this license agreement shall not be affected or impaired

thereby.

Copyright © 2018 by Peter Uray

All versions of CSharpCalc and of this manual are the intellectual property of Peter Uray.

- 6 -

6 CSharpCalc v1.0 Programming Manual

Introduction
This document is an introductory text on how to visualize simulation results and scientific data

using the CSharpCalc 3D extension. The 3D extension is based on the Windows presentation

foundation as included with .net. Being specialized on data visualization, the CSharpCalc 3D

extension offers a variety of features, but is also limited in functionality.

Features:

 Construction and rendering of custom 3D objects

 Construction of 3D objects from raw triangle data for importing 3D geometries from

external modeling software.

 Texture mapping and shading of surfaces.

 Support of procedural textures.

 Procedural object generation directly from CSharpCalc data structures such as

CSCRealVectorFunction.

 Grouping of objects.

Limitations

 No support for advanced 3D geometry construction

 No hierarchic structuring of objects

 No advanced rendering such as ray tracing

 No interaction with 3D geometries - visualization only.

Within this text it is assumed that the reader is familiar with CSharpCalc and the CSharpCalc

programming manual. Also detailed knowledge of drawing 2D graphics with CSharpCalc is

required as the 3D extension builds essentially on the concepts used for 2D graphics. In addition

to knowledge of CSharpCalc, the reader will require knowledge of 3D graphics programming

principles. In particular, scene graphs, triangle meshes, texture mapping, geometric

transformations, surface materials and illumination are used throughout the text without

further explanation. In order to acquire this knowledge the interested reader is referred to

freely available computer graphics primers with emphasis on programming, not theory. Detailed

knowledge of the rendering pipeline or complex geometry, such as inverse kinematics, is not

required for using the CSharpCalc 3D engine.

The CSharpCalc 3D extension consists of only six classes: CSC3DScene, CSC3DObject,

CSC3DObjectGroup, CSC3DFactory, CSC3DTexture and CSC3DTextureStyle.

The class CSC3DScene represents the scene graph. It is a static singleton class. During the scene

construction process 3D objects, represented by instances of CSC3DObject and

- 7 -

7 CSharpCalc v1.0 Programming Manual

CSC3DObjectGroup, are added to the scene. Once the scene construction is complete, calling

CSC3DScene::Render will render the view. In addition to scene graph management, CSC3DScene

also encapsulates the functionality for defining the camera attitude as well as for specifying the

scene illumination with one directional light and one ambient light.

The class CSC3DFactory provides an ample collection of methods for creating 3D objects ranging

from primitives such as cubes and spheres to complex data representations such as space curves

and height fields.

Instances of the class CSC3DObject represent triangle mesh objects. Texture coordinates may or

may not be available, depending on the chosen object construction method. CSC3DObjects can

be moved, rotated and scaled using appropriate methods. Moreover, CSC3DObjects can be

grouped by adding them to an instance of CSC3DObjectGroup.

The class CSC3DTexture represents a texture to be used for texture mapping. Textures can be

loaded from images located below the Data Directory or they can be created procedurally from

within scripts. When rendered procedurally, the class CSC3DTextureStyle defines a collection of

parameters such as foreground and background color or a line width.

Due to the large number of functions provided by the CSharpCalc 3D engine, this introduction

can only cover a subset of topics related to 3D rendering and data visualization in CSharpCalc.

The interested reader is once more referred to the Browser for a full class documentation. All

CSC3D classes have been added to the class documentation list which, as in the previous

versions, is available from within CSharpCalc.

Basic setup
Rendering 3D scenes in CSharpCalc follows the same line as rendering 2D graphics. The

following code shows a simple code framework.

// 2D surface initialization. This code is present in any graphical output.

// --

CSCDisplay.SetSurfaceSize(1000, 800);

CSCDisplay.SetPhysicalSize(-1, -1, 1, 1);

CSCDisplay.Clear(Color.Black);

// 3D scene setup. This code positions the camera and sets up lights.

// --

// Place the camera at position (5.0, 5.0, 5.0) in global coordinates

CSC3DScene.SetCameraPosition(5.0, 5.0, 5.0);

// Let the camera point towards the origin of the global coordinate system

CSC3DScene.SetCameraLookAt(0.0, 0.0, 0.0);

// Enable directional lighting

CSC3DScene.SetDirectionalLightColor(255, 255, 255);

CSC3DScene.SetLightDirection(-0.5, -0.5, -1.5);

- 8 -

8 CSharpCalc v1.0 Programming Manual

// Disable ambient lighting

CSC3DScene.SetAmbientLightColor(0, 0, 0);

// 3D scene construction

// --

CSC3DScene.BeginConstruction();

// Enter your scene construction code here ..

CSC3DScene.EndConstruction();

// Scene rendering and presentation.

// In this code sequence the CSC3DScene object renders

// the scene in the well known BeginRendering - EndRendering brace.

// Finally the rendering is presented on the surface.

// --

CSCDisplay.BeginRendering();

CSC3DScene.Render();

CSCDisplay.EndRendering();

CSCDisplay.Present();

The first code block initializes the 2D surface we will render the scene to. There is no difference

here to setting up the surface for 2D graphics. In the next block, the 3D scene setup, we define

the camera position and look at point. As an alternative to the look at point the class

CSC3DScene also provides a method for the specification of the camera direction which is not

shown in this example. This block also defines the scene illumination. In CSharpCalc 3D only one

ambient light and one directional light exists.

The actual scene construction is braced by two calls, CSC3DScene.BeginConstruction() and

CSC3DScene.EndConstruction(). This is very similar to rendering 2D graphics. The above code

example does not construct an actual 3D scene, hence the code area for doing that only

contains a comment.

The final code block renders the scene and presents it on the surface. As in the case of 2D

graphics, rendering takes place between CSCDisplay.BeginRendering() and

CSCDisplay.EndRendering(). Calling CSC3DScene.Render() does the actual 3D rendering.

The first scene
The above example showed the framework for rendering 3D scenes with CSharpCalc. Now it is

time to actually see a 3D object. As a simple example we replace the comment marking the

location for the scene construction code by the following code.

- 9 -

9 CSharpCalc v1.0 Programming Manual

// Use the factory to create a sphere...

CSC3DObject SPHERE = CSC3DFactory.CreateSphere(0.5, 64, 64);

// Specify the sphere's ambient surface material ..

SPHERE.SetDiffuse(0, 100, 200);

// .. and add the sphere to the scene

CSC3DScene.Add(SPHERE);

A simple sphere and a flat shaded, textured sphere (example below)

This code creates a sphere, defines a diffuse surface material for it and adds the sphere object

to the scene.

A flat shaded, textured sphere
In order to replace the single surface color by a texture image we need to redefine the diffuse

property of the sphere to be a texture. In order to achieve this, we replace the simple

construction code shown in the previous example by the following code:

// Use the factory to create a flat shaded, textured sphere...

CSC3DObject SPHERE = CSC3DFactory.CreateSphere(0.5, 16, 16);

// Create a checkerboard texture. First define a style, then create the texture

// using that style.

CSC3DTextureStyle style = new CSC3DTextureStyle(Color.Orange, Color.Blue, 3);

CSC3DTexture TEX = new CSC3DTexture(CSC3DTextureType.Checker,

CSC3DTextureSize.Medium, style);

// Specify the sphere's ambient surface material to be this texture

SPHERE.SetDiffuse(TEX);

// Apply a flat shading transformation ..

SPHERE.Flatten();

// .. and add the sphere to the scene

CSC3DScene.Add(SPHERE);

- 10 -

10 CSharpCalc v1.0 Programming Manual

This code is similar to the previous sphere example, but it replaces the simple blue color by a

procedurally generated texture image. Texture generation proceeds in two steps. In the first

step a style object is created and configured appropriately. Texture styles are represented by

instances of CSC3DTextureStyle. The actual texture is created by passing a type, a size and a

style to the constructor of the class CSC3DTexture. In order to patch the texture image onto a

3D object's surface it is specified to be this object's diffuse material.

By default, object surfaces in CSC3D are rendered using normal interpolation which gives these

surfaces a smooth appearance. Calling the method CSC3DObject.Flatten() converts the object's

surface to a flat surface. This conversion is not reversible!

Geometric object transformations
Instances of CSC3DObject can be moved, rotated and scaled. More complex transformations like

elastic deformation are not supported by CSharpCalc 3D, but possible if you write your own

code. This example shows how to apply rigid transformations

// Use the factory to create a cube of size 1 x 1 x 1

CSC3DObject MASTERCUBE = CSC3DFactory.CreateCube();

// scale the master cube by a factor 0.5, i.e. make it half as big.

MASTERCUBE.Scale(0.5);

// Specify the ambient surface material

MASTERCUBE.SetDiffuse(200, 0, 0);

// Create two clones of the master cube and position them in two different

// points. One cube is also rotated.

CSC3DObject CUBE1 = MASTERCUBE.Clone();

CUBE1.Rotate(0.0, 0.0, 1.0, 45.0);

CUBE1.MoveTo(0.5, -0.5, 0.0);

CSC3DScene.Add(CUBE1);

CSC3DObject CUBE2 = MASTERCUBE.Clone();

CUBE2.MoveTo(-0.5, 0.5, 1.0);

CSC3DScene.Add(CUBE2);

This code first generates a master cube to be used as a template for the two cubes which are

actually added to the scene. Using the method CSC3DObject.Clone(), two cubes are created and

subsequently moved and rotated.

In order to structure scenes CSharpCalc 3D offers the class CSC3DObjectGroup for grouping 3D

objects. Group objects can be transformed like single objects, only in this case the

transformations are applied to all objects contained in the group in a consistent manner. The

following code example illustrates grouping.

- 11 -

11 CSharpCalc v1.0 Programming Manual

// Use the factory to create a cube of size 1 x 1 x 1

CSC3DObject MASTERCUBE = CSC3DFactory.CreateCube();

MASTERCUBE.Scale(0.5);

// Create an empty object group

CSC3DObjectGroup CUBEGROUP = new CSC3DObjectGroup();

// specify the ambient surface material

MASTERCUBE.SetDiffuse(200, 0, 0);

// create two clones of the master cube and position them in two points

CSC3DObject CUBE1 = MASTERCUBE.Clone();

CUBE1.Scale(0.5, 0.5, 1.0);

CUBE1.MoveTo(0.5, -0.5, 0.0);

// add the first cube to the group

CUBEGROUP.Add(CUBE1);

CSC3DObject CUBE2 = MASTERCUBE.Clone();

CUBE2.Scale(0.5, 0.5, 1.0);

CUBE2.MoveTo(-0.5, 0.5, 0.0);

// add the second cube to the group

CUBEGROUP.Add(CUBE2);

// now transform the entire group

CUBEGROUP.MoveTo(0.0, 0.0, -1.0);

// finally add the entire group to the scene

CSC3DScene.Add(CUBEGROUP);

// for better orientation also add a colored coordinate cross to the scene

CSC3DObjectGroup COORDS = CSC3DFactory.CreateCoordinateCross(2.0, 0.05, 1.0,

0.0);

CSC3DScene.Add(COORDS);

This code creates an instance of CSC3DObjectGroup and adds the two cubes to the group.

Instead of adding each cube individually to the scene, only the group containing them is added.

Please note that, in addition to transforming the whole group, each object contained can also be

transformed individually as well.

A complex 3D scene
Using the knowledge about 3D graphics in CSharpCalc we gained so far, we can now attempt to

model and render a more complex scene. As an example we shall construct a molecular

structure, also resembling modern architecture. In our simplified view we assume that a

molecule is comprised of balls and sticks. Balls will be represented by spheres, while sticks will

be represented by cylinders. Both primitives can be generated using the Factory.

- 12 -

12 CSharpCalc v1.0 Programming Manual

In order to store the entire molecule as one single entity, we use an instance of

CSC3DObjectGroup. Once this is done we add clones of our balls and sticks to this group one

after the other. The sticks are stretched between atom positions using the method

CSC3DFactory.CreateObject(..). This method is useful for creating a clone of an object which is

fitted between the two points passed. In order to illustrate the use of the subscript operator of

object groups, we finally color one of the sticks red. The entire construction code reads as

follows.

// Create an object group named ATOMS

CSC3DObjectGroup ATOMS = new CSC3DObjectGroup();

// We shall use this reference for object clones

CSC3DObject OBJ = null;

// Create a sphere for representing the atoms

CSC3DObject SPHERE = CSC3DFactory.CreateSphere(0.2, 32, 32);

// Create a cylinder for representing the connections between atoms.

CSC3DObject CYLINDER = CSC3DFactory.CreateCylinder(0.05, 2, 32);

// Add 7 atoms to the group

OBJ = SPHERE.Clone(); OBJ.MoveTo(0.0, 0.0, 0.0); ATOMS.Add(OBJ);

OBJ = SPHERE.Clone(); OBJ.MoveTo(1.0, 0.0, 0.0); ATOMS.Add(OBJ);

OBJ = SPHERE.Clone(); OBJ.MoveTo(-1.0, 0.0, 0.0); ATOMS.Add(OBJ);

OBJ = SPHERE.Clone(); OBJ.MoveTo(0.0, 1.0, 0.0); ATOMS.Add(OBJ);

OBJ = SPHERE.Clone(); OBJ.MoveTo(0.0, -1.0, 0.0); ATOMS.Add(OBJ);

- 13 -

13 CSharpCalc v1.0 Programming Manual

OBJ = SPHERE.Clone(); OBJ.MoveTo(0.0, 0.0, 1.0); ATOMS.Add(OBJ);

OBJ = SPHERE.Clone(); OBJ.MoveTo(0.0, 0.0, -1.0); ATOMS.Add(OBJ);

// Create cylinders spanned between the atom positions to connect the atoms

// Connections to center

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0);

ATOMS.Add(OBJ);

// Side connections in the xy plane

OBJ = CSC3DFactory.CreateObject(CYLINDER, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, -1.0, 0.0, 0.0, 0.0, -1.0, 0.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0);

ATOMS.Add(OBJ);

// Side connections to upper atom

OBJ = CSC3DFactory.CreateObject(CYLINDER, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, -1.0, 0.0, 0.0, 0.0, 1.0);

ATOMS.Add(OBJ);

// Side connection to lower atom

OBJ = CSC3DFactory.CreateObject(CYLINDER, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, -1.0, 0.0, 0.0, 0.0, 0.0, -1.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, 1.0, 0.0, 0.0, 0.0, -1.0);

ATOMS.Add(OBJ);

OBJ = CSC3DFactory.CreateObject(CYLINDER, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0);

ATOMS.Add(OBJ);

// Assign a different material to one of the objects

ATOMS[19].SetDiffuse(200, 0, 0);

CSC3DScene.Add(ATOMS);

// For better orientation also add a coordinate cross to the scene

CSC3DObjectGroup COORDS = CSC3DFactory.CreateCoordinateCross(2.0, 0.02);

CSC3DScene.Add(COORDS);

- 14 -

14 CSharpCalc v1.0 Programming Manual

Paths and extrusion objects
So far we only used spheres and cylinders for the construction of 3D scenes. However,

CSharpCalc is capable of constructing more complex objects. One important class of complex

objects are so-called extrusion objects. An extrusion object is created by raising a path, for

example an arc, which is confined to the XY plane into the Z direction.

An extrusion object constructed by elevating a path in the XY-plane. Each ring of the extrusion has been
given a different radius.

In order to construct this object in CSharpCalc we need a 2D path to elevate. The class

CSC3DFactory offers a number of methods to create such path objects. Path objects are

represented by the class CSC3DObject but they contain no triangle definition, only a sequence of

points. A path is called closed if the last point in the sequence has the same position as the first

point. In order to construct a closed elevation object, one needs to elevate a closed path.

However, being closed is not a necessary condition for a path to be useful for elevation.

Once a path object is available it can be used to construct an elevation object by passing it to the

appropriate method of CSC3DFactory. In order to modulate the elevation a sequence of radii

can be specified along with the path object. The resulting elevation object will have as many

rings as there are elements in this radius array and each of these rings will have the radius

specified by the corresponding array element.

In order to add caps to the elevation surface one needs to generate an area object from the

path defining the object's outline. If the path is convex or star-shaped the class CSC3DFactory

has methods for generating such areas. If not you need to construct the caps yourself.

Once all ingredients for the construction are available they are passed to the CSC3DFactory

which in turn returns the final elevation object. The subsequent code illustrates the process,

which is actually much simpler than its description.

- 15 -

15 CSharpCalc v1.0 Programming Manual

// Create a closed circle segment to be used as extrusion object.

CSC3DObject BaseOBJ = CSC3DFactory.CreateCircleSegment(1.0, 90.0, 330.0, 6,

0.0, 0.0, 0.0);

// Convert the circle segment to a convex area object to be used as caps.

CSC3DObject CapOBJ = CSC3DFactory.CreateConvexArea(BaseOBJ);

// Create a sequence of radii for modulating the extruded object's rings

double[] R = new double[] { 0.8, 0.8, 0.5, 0.8, 0.5 };

// Using the above information, create the extruded object and move it.

CSC3DObjectGroup G = CSC3DFactory.CreateExtrudedObject(BaseOBJ, CapOBJ, 2.0,

R);

G.MoveRel(0.0, 0.0, -1.0);

// Apply a procedural texture to the three object parts.

CSC3DTextureStyle style = new CSC3DTextureStyle(Color.Gray, Color.White, 4);

G[0].SetDiffuse(new CSC3DTexture(CSC3DTextureType.Checker,

CSC3DTextureSize.Small, style));

// Change the texture style.

style.Level = 1;

G[1].SetDiffuse(new CSC3DTexture(CSC3DTextureType.Checker,

CSC3DTextureSize.Small, style));

G[2].SetDiffuse(new CSC3DTexture(CSC3DTextureType.Checker,

CSC3DTextureSize.Small, style));

// Add the extruded object to the scene.

CSC3DScene.Add(G);

The parameters passed to the creation methods are explained in the Browser.

Path objects
Many applications of scientific visualization require the construction of objects resembling space

curves. CSharpCalc offers construction of such objects from instances of CSCRealVectorFunction

under the condition that the vectors stored in the vector function have 3 dimensions. In addition

to the path the factory also takes a path object, for example a square or a circle, for defining the

cross section perpendicular to the space curve. The example below illustrates the construction

of a coil shaped space curve with a rectangular cross section.

// create a coil-shaped space curve represented as CSCRealVectorFunction

CSCRealVectorFunction coil = Coil.Create();

// Create a rectangular path object defining the cross section

CSC3DObject BaseOBJ = CSC3DFactory.CreateRectangle(0.1, 0.05);

// Create a filled rectangle of the same size to be used for the caps

CSC3DObject CapOBJ = CSC3DFactory.CreatePlane(0.1, 0.05);

// Create the path object representing the coil space curve

CSC3DObjectGroup G = CSC3DFactory.CreatePathObject(BaseOBJ, CapOBJ, coil);

- 16 -

16 CSharpCalc v1.0 Programming Manual

// Adapt the coil surface properties. Caps are highlighted in orange color.

G[0].Flatten();

G[0].SetDiffuse(100, 100, 100);

G[0].SetEmissive(50, 50, 20);

G[1].SetEmissive(250, 80, 20);

G[2].SetEmissive(250, 80, 20);

// Finally add the coil object (group) to the scene.

CSC3DScene.Add(G);

The coil is procedurally created by the following class:

public static class Coil

{

 public static CSCRealVectorFunction Create()

 {

 CSCRealVectorFunction curve = new CSCRealVectorFunction();

 double phi = 10.0;

 double x = 1.0;

 double y = 0.0;

 double z = 0.0;

 double cp = Math.Cos(Math.PI*phi/180.0);

 double sp = Math.Sin(Math.PI*phi/180.0);

 double x0 = x;

 double y0 = y;

 double z0 = z;

 curve.Samples.Add(new CSCRealVector(new double[] {x, y, z}));

 for(int j = 0; j <= 144; j++)

 {

 x = cp*x0 - sp*y0;

 y = sp*x0 + cp*y0;

 z = z0 + 0.25*j*phi/360.0;

 x0 = x;

 y0 = y;

 curve.Samples.Add(new CSCRealVector(new double[] {x, y, z}));

 }

 return curve;

 }

}

- 17 -

17 CSharpCalc v1.0 Programming Manual

A coil-shaped path object

A height field resembling a real function of two real variables, i.e. z = f(x, y)

- 18 -

18 CSharpCalc v1.0 Programming Manual

Height fields
Height fields are used for visualizing functions of the form z = f(x, y), but also for geographical

information or simply curved shapes. The Factory offers one method to construct a

CSC3DObject from a 2D array which is interpreted as height information. The following source

code illustrates the construction of a textured height field with a custom texture style.

// Create a style for the texture

CSC3DTextureStyle style = new CSC3DTextureStyle(Color.White, Color.Gray, 4);

// Create a height field object. The height field itself is defined in the

classcode below.

CSC3DObject OBJ = CSC3DFactory.CreateHeightField(4.0, 4.0,

HeightField.Create());

// Specify the texture to be a line grid rendered in the above style.

OBJ.SetDiffuse(new CSC3DTexture(CSC3DTextureType.Grid, CSC3DTextureSize.Large,

style));

// Add the height field object to the scene.

CSC3DScene.Add(OBJ);

The height field itself is procedurally created by the class HeightField.

// This class generates a height field example.

public static class HeightField

{

 public static double[,] Create()

 {

 double[,] Z = new double[tiles + 1, tiles + 1];

 for(int j = 0; j <= tiles; j++)

 {

 for(int i = 0; i <= tiles; i++)

 {

 double x = 2.0*(-1.0 + 2.0*i/tiles);

 double y = 2.0*(-1.0 + 2.0*j/tiles);

 double r2 = x*x + y*y;

 Z[i, j] = -0.3*Math.Exp(-1.0*r2*r2 + 2.0*r2);

 }

 }

 return Z;

 }

 const int tiles = 64;

}

- 19 -

19 CSharpCalc v1.0 Programming Manual

In order to add additional information, for example the phase angle of a complex function or

aerial imagery, to the height field, custom textures may be rendered and applied to the height

field geometry.

Coordinate Systems in 3D
In order to display 3D data in a numerical context one requires coordinate systems with number

labels attached. CSharpCalc offers functions to construct highly customized models of

coordinates. The axes and 3D lines are modeled using the available 3D primitives such as

cylinders, planes and space curves. Numerical text is added to a model as so-called label texture.

A label texture is a special type of procedurally created texture which contains text. The

example below explain illustrates their use.

// create a style for the textures

CSC3DTextureStyle style = new CSC3DTextureStyle(Color.Black, Color.White, 3, 3,

1.0, 1.0);

// create a grid texture for the back planes

CSC3DTexture gridtex = new CSC3DTexture(CSC3DTextureType.Grid,

CSC3DTextureSize.Large, style);

// also create label textures

CSC3DTexture label00 = new CSC3DTexture("-1.0", CSC3DTextureSize.Medium,

style);

CSC3DTexture label01 = new CSC3DTexture("0.0", CSC3DTextureSize.Medium,

style);

CSC3DTexture label02 = new CSC3DTexture("1.0", CSC3DTextureSize.Medium,

style);

CSC3DTexture label03 = new CSC3DTexture("2.0", CSC3DTextureSize.Medium,

style);

// create the frame box using the factory

CSC3DObjectGroup BOX = CSC3DFactory.CreateOpenFrameBox(0.02, -1.0, -1.0, 0.0,

1.0, 1.0, 2.0,

true);

// Patch the grid textures to the frame box's back planes ..

BOX[0].SetDiffuse(gridtex);

BOX[1].SetDiffuse(gridtex);

BOX[2].SetDiffuse(gridtex);

// .. and add the box

CSC3DScene.Add(BOX);

// Add text labels and position them accordingly.

// Small offsets are added to the positions for improved visual appearance.

CSC3DScene.Add(CSC3DFactory.Create3DLabel(-1.0, 1.12, 0.0, 0.1, label00));

CSC3DScene.Add(CSC3DFactory.Create3DLabel(0.0, 1.12, 0.0, 0.1, label01));

CSC3DScene.Add(CSC3DFactory.Create3DLabel(1.05, 1.08, 0.0, 0.1, label02));

CSC3DScene.Add(CSC3DFactory.Create3DLabel(1.1, -1.0, 0.0, 0.1, label00));

CSC3DScene.Add(CSC3DFactory.Create3DLabel(1.1, 0.0, 0.0, 0.1, label01));

- 20 -

20 CSharpCalc v1.0 Programming Manual

CSC3DScene.Add(CSC3DFactory.Create3DLabel(1.1, -1.0, 0.1, 0.1, label01));

CSC3DScene.Add(CSC3DFactory.Create3DLabel(1.1, -1.0, 1.0, 0.1, label02));

CSC3DScene.Add(CSC3DFactory.Create3DLabel(1.1, -1.0, 2.0, 0.1, label03));

The first code lines define a texture style and a grid texture. Subsequently, four label textures

are created for displaying the labels "-1.0", "0.0", "1.0" and "2.0". The open frame box is used as

basis for the coordinate system. It represents the first octant of a Cartesian 3D coordinate

frame. The back planes of the open frame box are textured with a grid pattern. Alternatively one

may also use a coordinate tripod, a coordinate cross or a custom model representing the

required coordinate frame.

A fully customized 3D coordinate frames with axes, grid and lettering at user-defined positions

The final block generates 3D versions of the labels using the CSC3DFactory.Create3DLabel(..)

method. This method automatically rotates the plane with the label texture towards the camera

direction (not position!). Hence, it is important that the camera attitude is specified prior to

scene construction.

- 21 -

21 CSharpCalc v1.0 Programming Manual

Summary and further reading
This text gave a brief introduction to the CSharpCalc 3D engine. Due to the complexity of the

topic a complete presentation of all features of CSharpCalc is neither possible nor desirable,

since such a presentation would be confusing and unreadable. For further information on 3D

rendering functionality offered by CSharpCalc the esteemed reader is once more directed to the

Browser. All classes pertaining to the CSharpCalc 3D extension are named using CSC3D as name

prefix.

In addition to the Browser, a repository with example scripts for many applications is currently

under construction on csharpcalc.org. Check the web site for further developments.

